David Rees’ 1956 paper

0.1 Definition of the Rees ring R(A,a)

Write Aft,t~!] for the Laurent polynomial ring over a ring A with ¢ an
indeterminate of degree 1. For a = (ay,...,ay) an ideal in A, the Rees ring
R(A, a) is the Z-graded subring R(A, a) C A[t,t™!] generated by ait, ..., amnt
and t~!. It has degree —k graded piece t %A for —k < 0.

A Laurent polynomial ¢ = Y ¢,t" € Aft,t!] is in R(A, a) if and only if
¢, € a” for r > 0. Identify A with the degree 0 piece A = Ry C R. If we
set u = t~1 for the negative generator! of A[t,t+~!] then multiplication by
u™ = t~" takes the degree n piece R,, of R(A,a) into t™"R,NA = (a") C A.

The Rees ring R(A, a) is Noetherian if A is. The quotient ring R(A, a)>0/(t)
is the graded ring gr, A = @ a™/a"! as discussed in [Ma, p. 120].

0.2 Krull’s intersection theorem
Theorem 0.1 For an ideal a of a Noetherian ring

[o.¢]
IL‘EﬂO a" < x=ax forsomea€a

Proof The implication <« is trivial. To prove the converse =, Step 1 is
the special case with a = (u) principal, generated by a nonzerodivisor wu.
Since x € a’ for every 4, we can write z = u’y;. The Noetherian assumption
applied to the ascending chain - -+ C (y;) C (yix1) C -+ gives (yn) = (Yn+1)
for some n. Thus y,+1 = by,, and hence y,, = ay, where a = bu € a. Then
axr = u"ay, = u"y, = T.

The Rees ring R(A, a) reduces the general case a = (ay, ..., an) to the
case of a principal ideal (u). The element u = t~! € R(A, a) is a nonzero-
divisor. If € A is contained in a’ then = € u’R. So by Step 1 there exists
c=> ¢t" € R(A,a) for which z = xzcu. Now x € A, so that © = ax, where
a = c1 € a. This proves the theorem. [

ncluding the negatively graded part of R allows u as a ring element; its main role is
simply to relabel an element of R,, as an element of a- R,,—1. We sometimes tacitly work
only with @, ., Rn.



Preparation for the Principal Ideal Theorem

Lemma 0.2 (Prototype for the Artin—Rees lemma) Let a,b be ideals
of a Noetherian ring A. Then there exists an integer k such that

a"Nb=(a*No)a"* foralln>k.

Proof Setting b* = bA[t,t!] N R defines a homogeneous ideal b* of R =
R(A,a). It consists of all sums > b,t" with b € a"Nb. Since R is Noetherian,
b* is generated by finitely many elements of the form b,t". Taking k as the
largest exponent of ¢ involved among these generators gives at once

a"Nb=(a"Nb*)=(@"Nb)a"* foralln>k.

Corollary 0.3 Suppose x € A is a nonzerodivisor. Write a” : x for the
colon ideal {c € A | xc € a™}. There exists an integer k for which

a":xCa”* foralln>k.

Proof By Lemma 0.2, there exists k such that

a"NzA = (*NzAd)a" % cza"* foralln >k

But a” NxA = x(a” : z). Now since x is a nonzerodivisor, (a” : z) C a"*.

0.3 Krull’s Hauptidealsatz (Principal Ideal Theorem)

Theorem 0.4 Let A be a Noetherian local domain with maximal ideal m.
Assume some principal ideal Ax is m-primary. Then every nonzero ideal of
A is m-primary. In other words, m is the unique nonzero prime ideal of A

or Spec A = {0, m}.

Proof Let y € A be a nonzero element. Apply Lemma 0.2 to a = (z) and
b = (y) to get an integer k such that

2" AN YA = z(zFANyA). (1)

Claim (1) implies that (z**1,y) = (2*,y). The claim implies the theorem:

it gives ¥ = az**! + by for some a,b € A, that we rewrite as

(1 —az)z® = by € yA.



Now (1 — azx) is a unit of A, so that 2* = by € yA, and yA is m-primary.
Thus every nonzero ideal of A is m-primary.
To prove the claim, use the fact that since (z") is m-primary, A/(z")

and any of its subquotients are modules of finite length. There is an obvious
inclusion

(&) € (2, y).

Calculating lengths of A/(2*+1, ) and A/(x*,y), we find that they are equal,
and hence (zF*! y) = (2%, y). Start from

(z"TPA +yA) 2" A = yA) (T ANy A)
by the Third Isomorphism theorem (M + N)/N = M/(M N N). Now

E(yA/(:ck"'lA NyA)) = K(yA/a:(xkA NyA)) by (1) (2)
= l(yA/zyA) + l(zyA/z(x kAﬂyA)) (3)

= ((A/zA) + L(yA/(z" AN yA)) (4)

= ((2F A/2F T A) + 0((a% A + yA) /2F A) (5)

= (2" A+ yA) /=" A). (6)

Step-by-step: (2) to (3) inserts the intermediate ideal xyA between yA and
z(zF AnyA). (3) to (4) uses multiplication by the nonzero element y in the
domain A to give an isomorphism A/zA = yA/xyA and similarly with x for
the second summand. (4) to (5) multiplies by 2* on the first summand, and
applies the Third Isomorphism theorem for the second. Then (5) to (6) omits
the intermediate ideal ¥ A. (Kaplansky’s more structured interpretation is
discussed below.)
Putting everything together gives

E((kaA + yA)/xk"'lA) = E((J:kA + yA)/a;kHA).
Since zF A + yA D zF1 A 4+ yA, the claim follows. O

Corollary 0.5 (Krull’s Hauptidealsatz) In a Noetherian ring, if P is a
minimal prime containing a principal ideal Ax then P has height ht P < 1.

Theorem 0.4 is the statement in the case of a local domain. Two straight-
forward steps reduce the general Noetherian case to this: we get the local
case since a chain of primes Py C P, € P in A would give a chain of prime
ideals PyAp C PiAp C PAp in the local ring (Ap, PAp). And by passing



to the quotient rings 0 C P,/Py € A/P reduces to a domain. This proves
the theorem.

With hindsight, Kaplansky explains what is going on in Rees’ display
(2-6) more simply and convincingly. The same appeal to Lemma 0.2 gives
(1). He now sets v = z¥ and interprets (1) as saying

tu? € (y) = tu € (y). O]

That is, the basic form of Artin—Rees allows us to cancel a power of w.
Now consider the submodule

(w?,y)/u* C (u,y)/u’. (7)

Claim Assumption (!) implies equality in (7). The part equals the whole.
In fact on the rhs, inserting the submodule (u) gives the composition
series (u,y) D (u) D (u?) with factors A = (u,y)/u followed by B = u/u?.
The lhs has composition series (u?,y) D (u?,uy) D (u?) with factors
C = (u,y)/(u®,uy) and D = (u?,uy)/(u?).
Now A = (u,y)/(u) = D = (u?,uy)/u? (multiplying by u in a domain
as in (3) to (4) of Rees’ display). And

B = (U)/(Uz) =(C = (u27y)/(u27uy)7

follows using the magic implication (!).
We are in the Artinian set-up. The two modules in the claim both have
the same finite length, and this proves the claim. [

Commentary

Let A be a Noetherian ring. The Zariski topology on Spec A is Noetherian.
Minimal prime ideals P € Spec A correspond to its finitely many irreducible
components.

Krull’s 1928 Hauptidealsatz: Suppose A is Noetherian and r € A.
Then a prime ideal P € Spec A minimal among prime ideals containing x
has ht P < 1.

If ht P = 0 then P itself is a minimal prime of A. The alternative
ht P = 1 means that any ¢ € Spec A with ¢ C P is a minimal prime ideal
of A (and there exists at least one such). The result is nontrivial (Melvyn
Hochster says it caused amazement in 1928). It is a corollary of the main
theorem of dimension theory for Noetherian local rings.



There are a number of fairly unreadable proofs online, including that in
Wikipedia (someone should beat that up).
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