
David Rees’ 1956 paper

0.1 Definition of the Rees ring R(A, a)

Write A[t, t−1] for the Laurent polynomial ring over a ring A with t an
indeterminate of degree 1. For a = (a1, . . . , am) an ideal in A, the Rees ring
R(A, a) is the Z-graded subring R(A, a) ⊂ A[t, t−1] generated by a1t, . . . , amt
and t−1. It has degree −k graded piece t−kA for −k < 0.

A Laurent polynomial c =
∑

crt
r ∈ A[t, t−1] is in R(A, a) if and only if

cr ∈ ar for r ≥ 0. Identify A with the degree 0 piece A = R0 ⊂ R. If we
set u = t−1 for the negative generator1 of A[t, t−1] then multiplication by
un = t−n takes the degree n piece Rn of R(A, a) into t−nRn∩A = (an) ⊂ A.

The Rees ring R(A, a) is Noetherian if A is. The quotient ring R(A, a)≥0/(t)
is the graded ring graA =

⊕
an/an+1 as discussed in [Ma, p. 120].

0.2 Krull’s intersection theorem

Theorem 0.1 For an ideal a of a Noetherian ring

x ∈
⋂∞

0
an ⇐⇒ x = ax for some a ∈ a

Proof The implication ⇐ is trivial. To prove the converse ⇒, Step 1 is
the special case with a = (u) principal, generated by a nonzerodivisor u.
Since x ∈ ai for every i, we can write x = uiyi. The Noetherian assumption
applied to the ascending chain · · · ⊂ (yi) ⊂ (yi+1) ⊂ · · · gives (yn) = (yn+1)
for some n. Thus yn+1 = byn, and hence yn = ayn where a = bu ∈ a. Then
ax = unayn = unyn = x.

The Rees ring R(A, a) reduces the general case a = (a1, . . . , am) to the
case of a principal ideal (u). The element u = t−1 ∈ R(A, a) is a nonzero-
divisor. If x ∈ A is contained in ai then x ∈ uiR. So by Step 1 there exists
c =

∑
crt

r ∈ R(A, a) for which x = xcu. Now x ∈ A, so that x = ax, where
a = c1 ∈ a. This proves the theorem. �

1Including the negatively graded part of R allows u as a ring element; its main role is
simply to relabel an element of Rn as an element of a ·Rn−1. We sometimes tacitly work
only with

⊕
n≥0 Rn.
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Preparation for the Principal Ideal Theorem

Lemma 0.2 (Prototype for the Artin–Rees lemma) Let a, b be ideals
of a Noetherian ring A. Then there exists an integer k such that

an ∩ b = (ak ∩ b)an−k for all n ≥ k.

Proof Setting b∗ = bA[t, t−1] ∩ R defines a homogeneous ideal b∗ of R =
R(A, a). It consists of all sums

∑
brt

r with b ∈ ar∩b. Since R is Noetherian,
b∗ is generated by finitely many elements of the form brt

r. Taking k as the
largest exponent of t involved among these generators gives at once

an ∩ b = (ak ∩ b∗) = (ak ∩ b)an−k for all n ≥ k.

Corollary 0.3 Suppose x ∈ A is a nonzerodivisor. Write an : x for the
colon ideal {c ∈ A | xc ∈ an}. There exists an integer k for which

an : x ⊂ an−k for all n ≥ k.

Proof By Lemma 0.2, there exists k such that

an ∩ xA = (ak ∩ xA)an−k ⊂ xan−k for all n ≥ k.

But an ∩ xA = x(an : x). Now since x is a nonzerodivisor, (an : x) ⊂ an−k.

0.3 Krull’s Hauptidealsatz (Principal Ideal Theorem)

Theorem 0.4 Let A be a Noetherian local domain with maximal ideal m.
Assume some principal ideal Ax is m-primary. Then every nonzero ideal of
A is m-primary. In other words, m is the unique nonzero prime ideal of A
or SpecA = {0,m}.

Proof Let y ∈ A be a nonzero element. Apply Lemma 0.2 to a = (x) and
b = (y) to get an integer k such that

xk+1A ∩ yA = x(xkA ∩ yA). (1)

Claim (1) implies that (xk+1, y) = (xk, y). The claim implies the theorem:
it gives xk = axk+1 + by for some a, b ∈ A, that we rewrite as

(1− ax)xk = by ∈ yA.
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Now (1 − ax) is a unit of A, so that xk = by ∈ yA, and yA is m-primary.
Thus every nonzero ideal of A is m-primary.

To prove the claim, use the fact that since (xn) is m-primary, A/(xn)
and any of its subquotients are modules of finite length. There is an obvious
inclusion

(xk+1, y) ⊂ (xk, y).

Calculating lengths of A/(xk+1, y) and A/(xk, y), we find that they are equal,
and hence (xk+1, y) = (xk, y). Start from

(xk+1A + yA)/xk+1A ∼= yA/(xk+1A ∩ yA)

by the Third Isomorphism theorem (M + N)/N ∼= M/(M ∩N). Now

`
(
yA/(xk+1A ∩ yA)

)
= `
(
yA/x(xkA ∩ yA)

)
by (1) (2)

= `
(
yA/xyA

)
+ `
(
xyA/x(xkA ∩ yA)

)
(3)

= `
(
A/xA

)
+ `
(
yA/(xkA ∩ yA)

)
(4)

= `
(
xkA/xk+1A

)
+ `
(
(xkA + yA)/xkA

)
(5)

= `
(
(xkA + yA)/xk+1A

)
. (6)

Step-by-step: (2) to (3) inserts the intermediate ideal xyA between yA and
x(xkA∩ yA). (3) to (4) uses multiplication by the nonzero element y in the
domain A to give an isomorphism A/xA ∼= yA/xyA and similarly with x for
the second summand. (4) to (5) multiplies by xk on the first summand, and
applies the Third Isomorphism theorem for the second. Then (5) to (6) omits
the intermediate ideal xkA. (Kaplansky’s more structured interpretation is
discussed below.)

Putting everything together gives

`
(
(xk+1A + yA)/xk+1A

)
= `
(
(xkA + yA)/xk+1A

)
.

Since xkA + yA ⊃ xk+1A + yA, the claim follows. �

Corollary 0.5 (Krull’s Hauptidealsatz) In a Noetherian ring, if P is a
minimal prime containing a principal ideal Ax then P has height htP ≤ 1.

Theorem 0.4 is the statement in the case of a local domain. Two straight-
forward steps reduce the general Noetherian case to this: we get the local
case since a chain of primes P0 ( P1 ( P in A would give a chain of prime
ideals P0AP ( P1AP ( PAP in the local ring (AP , PAP ). And by passing
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to the quotient rings 0 ( P1/P0 ( A/P reduces to a domain. This proves
the theorem.

With hindsight, Kaplansky explains what is going on in Rees’ display
(2–6) more simply and convincingly. The same appeal to Lemma 0.2 gives
(1). He now sets u = xk and interprets (1) as saying

tu2 ∈ (y) =⇒ tu ∈ (y). (!)

That is, the basic form of Artin–Rees allows us to cancel a power of u.
Now consider the submodule

(u2, y)/u2 ⊂ (u, y)/u2. (7)

Claim Assumption (!) implies equality in (7). The part equals the whole.
In fact on the rhs, inserting the submodule (u) gives the composition

series (u, y) ⊃ (u) ⊃ (u2) with factors A = (u, y)/u followed by B = u/u2.
The lhs has composition series (u2, y) ⊃ (u2, uy) ⊃ (u2) with factors

C = (u2, y)/(u2, uy) and D = (u2, uy)/(u2).
Now A = (u, y)/(u) ∼= D = (u2, uy)/u2 (multiplying by u in a domain

as in (3) to (4) of Rees’ display). And

B = (u)/(u2) ∼= C = (u2, y)/(u2, uy),

follows using the magic implication (!).
We are in the Artinian set-up. The two modules in the claim both have

the same finite length, and this proves the claim. �

Commentary

Let A be a Noetherian ring. The Zariski topology on SpecA is Noetherian.
Minimal prime ideals P ∈ SpecA correspond to its finitely many irreducible
components.

Krull’s 1928 Hauptidealsatz: Suppose A is Noetherian and x ∈ A.
Then a prime ideal P ∈ SpecA minimal among prime ideals containing x
has htP ≤ 1.

If htP = 0 then P itself is a minimal prime of A. The alternative
htP = 1 means that any q ∈ SpecA with q ( P is a minimal prime ideal
of A (and there exists at least one such). The result is nontrivial (Melvyn
Hochster says it caused amazement in 1928). It is a corollary of the main
theorem of dimension theory for Noetherian local rings.
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There are a number of fairly unreadable proofs online, including that in
Wikipedia (someone should beat that up).
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